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Abstract

We extend Guillemin and Sternberg’s Realization Theorem for transitive Lie al-
gebras of formal vector fields to certain Lie algebras of formal first order differen-
tial operators, and show that Blattner’s proof of the Realization Theorem allows
for a computer implementation that automatically reproduces many realizations
derived in the existing literature, and that can also be used to compute new real-
izations. Applications include the explicit construction of quasi-exactly solvable
Hamiltonians, and of finite-dimensional irreducible modules over semisimple Lie
algebras.

1. Introduction

For fixed λ ∈ R, the space

gλ := 〈∂x, −2x∂x + λ,−x2∂x + λx〉R

of first order differential operators on the real line form a Lie algebra isomorphic
to sl2(R). If λ is a non-negative integer, then the finite-dimensional vector space

Vλ := 〈1, x, x2, . . . , xλ〉R

is invariant under gλ, whence under any element of the latter’s enveloping asso-
ciative algebra. Up to coordinate changes and gauge transforms, many physically
meaningful Hamiltonians H on the real line are quadratic elements of this en-
veloping algebra for certain λ ∈ N; we find that for such H a finite part of the
spectrum of the associated Schrödinger equation Hψ = Eψ can be determined,
namely the part corresponding to Vλ. For this reason, such Hamiltonians are
called quasi-exactly solvable (8).
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One step towards finding quasi-exactly solvable Hamiltonians in n dimen-
sions consists of computing Lie algebras of first order differential operators in
n variables; this is the goal of the paper at hand. We will restrict our atten-
tion to a particular type of Lie algebras of differential operators, which can be
formally described as follows. Let K be a field of characteristic 0, let g be a
Lie algebra over K, and let k be a subalgebra of g of finite codimension n. Let
x = (x1, . . . , xn) be a list of variables, denote by K[[x]] the K-algebra of formal
power series in the xi with coefficients from K, and write D̂ for the Lie algebra
of K-derivations of K[[x]]. Any element of D̂ is of the form

∑
i fi∂i, where ∂i de-

notes differentiation with respect to xi, and the fi are elements of K[[x]], called
the coefficients of the derivation. Let D̂0 denote the isotropy subalgebra at the
origin, i.e., the algebra consisting of those derivations that leave the maximal
ideal of K[[x]] invariant. Now a realization of (g, k) in terms of derivations is by
definition a homomorphism φ : g → D̂ with the property that φ−1(D̂0) = k. As
codimg k = codimD̂ D̂0 = n, the image φ(g) is a transitive Lie algebra, that is:

φ(g) ∩ (∂i + D̂) 6= ∅ for all i = 1, . . . , n. The Realization Theorem of Guillemin
and Sternberg states that a realization in terms of derivations always exists, and
that it is unique up to formal coordinate changes (13).

The space D̂ +K[[x]] is a Lie algebra with respect to the Lie bracket defined
by

[X + f, Y + g] := [X,Y ] +X(g)− Y (f), X, Y ∈ D̂, f, g ∈ K[[x]];

its elements are called (formal) first order differential operators (in n variables).
A realization of (g, k) in terms of first order differential operators is by definition
a homomorphism ψ : g → D̂ +K[[x]] satisfying

ψ(X) = φ(X) + c(X), X ∈ g

for some realization φ of (g, k) in terms of derivations and some linear map
c : g → K[[x]]. Given φ and c, the map ψ above is a homomorphism of Lie
algebras if and only if

c([X, Y ]) = φ(X)(c(Y ))− φ(Y )(c(X)),

i.e., if and only if c is a cocycle of g with values in K[[x]], where the latter is
viewed as a g-module through φ. The coboundaries are of the form c : X 7→ X(f)
for a fixed f ∈ K[[x]]; adding such a coboundary to a realization in terms of
differential operators is called an infinitesimal gauge transformation.

We conclude that, in order to construct ‘all’ realizations of (g, k) in terms
of first order differential operators, it suffices to construct a realization φ of
(g, k) in terms of derivations (Section 2) and to describe the cohomology group
H1(g, (K[[x]], φ)) explicitly (Section 3). This approach is widely spread in the
literature (7; 16; 18). Indeed, (18) describes realizations (in terms of first order
differential operators) of pairs (g, k) where g is semisimple and k is a Borel sub-
algebra, and concludes with the question of whether the approach followed in
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that paper can be generalized to the situation where g is not semisimple or k is
not a Borel subalgebra. The paper at hand shows that it can; in particular, Sec-
tion 4 contains a variety of realizations computed in GAP (6). In fact, the images
of all realizations computed there consist of polynomial first order differential
operators; such a realization is a called a polynomial realization.

2. Realization in terms of Vector Fields

To formulate an explicit realization, let g be a Lie algebra over a field K of
characteristic zero, and let k be a subalgebra of g of finite codimension n. Choose
a well-ordered basis C of k, and let Y := (Y1, . . . , Yn) be a list of elements of g

projecting onto a basis of g/k. Order B := C ∪ {Y1, . . . , Yn} as follows: X ≤ Yi

for all X ∈ C and i = 1, . . . , n, and Yi ≤ Yj :⇔ i ≤ j. Consider the universal
enveloping algebra U(g) of g with PBW-basis corresponding to the ordered basis
B, and let χi : U(g) → K (i = 1, . . . , n) map u to the coefficient of the PBW-
monomial Yi in u.

Theorem 2.1 (Realization Formula): The map φY : g → D̂ defined by

φY(X) :=
n∑

i=1

(∑
m∈Nn

χi(Y
mX)

xm

m!

)
∂i,

is a transitive realization of the pair (g, k); here Ym := Y m1
1 · · ·Y mn

n , xm :=
xm1

1 · · ·xmn
n , and m! := m1! · · ·mn!

Kantor presents an equally general realization formula in (14), and it would
be interesting to investigate the relation between the two. Here, we choose to
work with the formula above because of its computational transparency and the
fact that it can easily be modified to a realization formula in terms of first order
differential operators. We briefly sketch a proof of our Realization Formula, as
we will need some of its ingredients in Section 3. For details see (1) and (5).

Proof: Following (1), we consider the g-module

A := HomU(k)(U(g), K),

which is defined as follows: view U(g) as a left U(k)-module, and endow K with
the trivial left U(k)-module structure. Then A is the space of all homomorphisms
U(g) → K of U(k)-modules. The action of g on A is defined by

(Xa)u := a(uX), for X ∈ g, a ∈ A, and u ∈ U(g).

Blattner endows A with the structure of a commutative algebra, with respect to
which g turns out to act by derivations.

By the PBW-theorem U(g) is a free U(k)-module with basis {Ym | m ∈ Nn}.
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An element of A is therefore determined by its values on these monomials, and
these values can be prescribed arbitrarily. From this it follows that the pull-back
α∗ of the K-linear map α : K[x] → U(g) determined by α(xm) = Ym is a linear
isomorphism from A onto K[x]∗. For m ∈ Nn let fm ∈ K[x]∗ be the element
determined by 〈xr, fm〉 = δr,m, r ∈ Nn. Then the map β : K[x]∗ → K[[x]]
defined by

β

(∑
m∈Nn

γmfm

)
=
∑

m∈Nn

γm
xm

m!

is a linear isomorphism, and it turns out that β ◦ α∗ is an algebra isomorphism
A → K[[x]]. Carrying over the action of g on A to an action of g on K[[x]] by
means of this isomorphism, we find the Realization Formula. 2

One readily verifies that the Realization Formula only depends on Y, not
on C; this justifies the notation φY. The computational interpretation of φY is
as follows: to compute the coefficient of xm in the coefficient of ∂i in φY(X),
simply multiply Ym from the right by X, reduce this element of U(g) to PBW-
normal form, extract the coefficient of Yi, and divide by m! This algorithm was
implemented in GAP (6), and has proved an effective tool in computing explicit
realizations of pairs (g, k). The following proposition is of particular interest.

Proposition 2.1: Let m be a vector space complement of k in g, and assume
that m is in fact a subalgebra of g acting locally nilpotently on the latter, that is:
we have

∀X ∈ g ∃d ∈ N : (adg m)dX = 0.

Let Y = (Y1, . . . , Yn) be a basis of m satisfying [m, Yi] ⊆ 〈Yi+1, . . . , Yn〉K for all i.
Let σ be any permutation of {1, . . . , n}, and write Yσ := (Yσ(1), . . . , Yσ(n)). Then
φYσ is a polynomial realization. Indeed, if adg(m)dX = 0, then the coefficients
of φYσ(X) contain only monomials of total degree < d.

The proof of (5, Theorem 1.7) is easily modified to a proof of this proposition,
and as that proof requires rather technical notation not to be used elsewhere in
the present paper, we omit it here. We do, however, want to stress the following
subtlety: it is tempting to think, in the setting of Proposition 2.1, that φY is
polynomial for any basis Y of m. The following example shows that this is not
true.

Example: Let g = 〈Y1, Y2, Y3〉K be a Lie algebra with Lie bracket determined by

[Y1, Y2] = −Y1 + Y3, [Y1, Y3] = 0, and [Y2, Y3] = Y1 − Y3.

Then g is nilpotent, but the realization φY of (g, 0) is not nilpotent. Indeed, by
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induction on k one can simultaneously show that

Y k
2 Y1 = Y1Y

k
2 +

k−1∑
i=0

k(k − 1) · · · (i+ 1)(Y1Y
i
2 − Y i

2Y3) and

Y3Y
k
2 = Y k

2 Y3 +
k−1∑
i=0

k(k − 1) · · · (i+ 1)(−Y1Y
i
2 + Y i

2Y3).

The first of these equalities shows that the coefficient of Y1 in Y k
2 Y1 is equal to

k! for all k, so that the term xk
2∂1 occurs with coefficient 1 in φY(Y1).

We will apply Proposition 2.1 in the following setting: let g be a finite-
dimensional split semisimple Lie algebra, and let h be a split Cartan subalgebra
of g. Choose a fundamental subset Π in the root system ∆ ⊆ h∗, and denote by
∆± the corresponding sets of positive and negative roots, respectively. Let Π0

be a subset of Π, and denote by ∆0 the intersection of the Z-span of Π0 with ∆.
Set

g0 := h⊕
⊕
α∈∆0

gα, u± :=
⊕

α∈∆±\∆0

gα, and p± := g0 ⊕ u±.

Then u+ is a nilpotently acting subalgebra complementary to the parabolic sub-
algebra p− of g, and if Y is a basis of u+ consisting of h-root vectors, then φY is
a polynomial realization of (g, p−). Polynomial realizations of such semisimple-
parabolic pairs are also computed in (11), (12), (17), and (19). Section 4 contains
some examples handled by our GAP-program based on the Realization Formula.

3. Realization in terms of First Order Differential Opera-
tors

The main ingredient in Blattner’s proof of the Realization Theorem is the g-
module HomU(k)(U(g), K) =: A, which serves as a model for the algebra of
formal power series in codimg(k) variables if this codimension is finite. To extend
Blattner’s construction to realizations in terms of first order differential opera-
tors, we must compute H1(g, A), as argued in Section 1. In this section we prove
the following theorem, which is the formal analogue of (16, Theorem 8.3).

Theorem 3.1: The cohomology space H1(g, A) is canonically isomorphic to
(k/[k, k])∗.

A consequence of this theorem and its proof will be an explicit realization
in terms of first order differential operators. To formulate this realization, let
g, k, C,Y,B, and χi be as in Section 2, and let πk : U(g) → k be the projection
onto k along the space spanned by Y and the PBW-monomials of degree ≥ 2.
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Theorem 3.2: Let η ∈ k∗ be such that η([k, k]) = 0. Then the map

φY,η(X) = φY(X) +
∑

m∈Nn

η(πk(Y
mX))

xm

m!

is a realization of (g, k) in terms of first order differential operators. Moreover, if
φ is any such realization, then there exists a unique η ∈ (k/[k, k])∗ such that φY,η

is equivalent to φ under a coordinate transformation followed by an infinitesimal
gauge transformation.

In Theorem 3.1 we do not assume that k has finite codimension in g. In fact,
this condition is not essential in Theorems 2.1 and 3.2 either, but there we
do assume it to keep notation (Ym) and interpretation (formal power series in
a finite rather than infinite number of variables) transparent. We proceed to
compute the space of cocycles of g with values in A.

Lemma 3.1: Let η ∈ (U(g)g)∗ be such that η(kU(g)g) = 0. Then the map cη :
g → U(g)∗ defined by

cη(X)u := η(uX) for X ∈ g, u ∈ U(g)

is an element of Z1(g, A).

Proof: The condition on η ensures that cη(X)(kU(g)) = 0, so that the image of
cη is contained in A. To check that cη is a cocycle, let X, Y ∈ g and u ∈ U(g),
and compute

cη([X, Y ])u = η(uXY )− η(uY X)

= cη(Y )(uX)− cη(X)(uY )

= (Xcη(Y ))(u)− (Y cη(X))(u),

where the last equality follows from the definition of the g-module structure on
A. We conclude that cη([X, Y ]) = Xcη(Y )− Y cη(X), whence the lemma. 2

Lemma 3.2: Every cocycle of g with values in A is of the form cη for some η
as in Lemma 3.1.

For the proof of this lemma and Lemma 3.5 we will use the following set-
theoretic lemma, whose proof is standard and therefore omitted.

Lemma 3.3: Let S be a well-ordered set. Then there exists a unique well-order
on the collection C of finite subsets of S with the following properties: ∅ ≤ S for
all S ∈ C, and if S, T ∈ C are both non-empty, then

S ≤ T ⇔
max(S) < max(T ) or (max(S) = max(T ) and (S \max(S)) ≤ (T \max(T ))).
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Proof (Proof of Lemma 3.2): Let c ∈ Z1(g, A), and consider the linear function
η̃ on U(g)⊗ g determined by

η̃(u⊗X) = c(X)u for u ∈ U(g), X ∈ g.

We want to show that η̃ factorises into η ◦ π, where π is the multiplication map
U(g)⊗g → U(g)g and η is an element of (U(g)g)∗. This is equivalent to showing
that ker π is contained in ker η̃.

To this end, let B be any well-ordered basis of g, and let

M := {X1X2 · · ·Xd | X1, . . . , Xd ∈ B and X1 ≤ X2 ≤ . . . ≤ Xd}

be the corresponding set of PBW-monomials. This set is also well-ordered, as
follows: if X = (X1, . . . , Xd) and Y = (Y1, . . . , Ye) are non-decreasing lists of
elements of B, then X1 · · ·Xd ≤ Y1 · · ·Ye if and only if either d < e, or d = e and
X is lexicographically at most Y, that is: either X = Y or if i is the smallest
index for which Xi 6= Yi, then Xi < Yi. Next, we endow the Cartesian product
M×B with the lexicographic well-order

(u,X) ≤ (v, Y ) :⇔ u < b or (u = v and X ≤ Y ), u, v ∈M, X, Y ∈ B.

The collection of finite subsets of M×B, in turn, is well-ordered as in Lemma
3.3. To an element

r =
∑

u∈M,X∈B

γu,Xu⊗X ∈ U(g)⊗ g,

we associate the finite subset

supp(r) := {(u,X) ∈M×B | γu,X 6= 0}

of M×B, called the support of r. To show that π(r) = 0 implies η̃(r) = 0, we
proceed by induction on supp(r). Let r 6= 0 as above be an element of the kernel
of π, and assume that all elements s ∈ kerπ with support smaller than supp(r)
are in the kernel of η̃. By the PBW-theorem there exists a pair (u,X) ∈ supp(r)
for which u ends on Y > X. Then, writing u = u′Y for some u′ ∈ M of degree
deg(u)− 1, we have

0 = π(r − γu,X(u′Y )⊗X) + γu,Xu
′Y X

= π(r − γu,X(u′Y )⊗X) + γu,X(u′XY + u′[Y,X])

= π(s),

where
s := r − γu,Xu

′Y ⊗X + γu,Xu
′X ⊗ Y + γu,Xu

′ ⊗ [Y,X].

Now u′ is smaller than u′Y , and u′X, too, contains only PBW-monomials smaller
than u′Y . This implies that all elements in the supports of u′⊗[Y,X] and u′X⊗Y
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are smaller than (u,X), so that supp(s) < supp(r) and η̃(s) = 0 by the induction
hypothesis. Using the g-module structure on A and the fact that c is a cocycle
we find

η̃(u′ ⊗ [Y,X]) = c([Y,X])u′

= (Y c(X)−Xc(Y ))u′

= c(X)(u′Y )− c(Y )(u′X)

= η̃(u′Y ⊗X − u′X ⊗ Y ).

Combining this with η̃(s) = 0 we find η̃(r) = 0, as claimed. This concludes
the proof that η̃ factorises into η ◦ π. By construction, η ∈ (U(g)g)∗ satisfies
η(uX) = c(X)u for all u ∈ U(g) and X ∈ g, so that

η(kU(g)g) = C(g)(kU(g)) = 0,

and c = cη. 2

We have now proved that the map

(U(g)g/kU(g)g)∗ → Z1(g, A), η 7→ cη

is surjective. As it is also injective, the space on the left-hand side parameterizes
Z1(g, A). Let us characterise the coboundaries in a similar fashion.

Lemma 3.4: We have

B1(g, A) = {cη | η ∈ (U(g)g)∗, η(kU(g)) = 0}.

Proof: Let a ∈ A, and consider the corresponding coboundary

δ(a)X := Xa, for X ∈ g.

Compute
(δ(a)X)u = (Xa)(u) = a(uX),

so if we set η := a|U(g)g, then δ(a) = cη. 2

Combining Lemmas 3.2 and 3.4, we find that H1(g, A) = Z1(g, A)/B1(g, A)
is parameterized by

(U(g)g/kU(g)g)∗/(U(g)g/kU(g))∗,

which is canonically isomorphic to

(kU(g)/kU(g)g)∗.

The following lemma exposes this space as the space of 1-dimensional characters
of k.
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Lemma 3.5: We have

k + kU(g)g = kU(g) and

k ∩ kU(g)g = [k, k],

so that kU(g)/kU(g)g is canonically isomorphic to k/[k, k].

Proof: The first statement is clear from

U(g) = K · 1 + U(g)g.

In the second statement, the inclusion ⊇ is clear. For the converse, let B be a
basis of g such that C := B ∩ k is a basis of k, and choose a well-order on B such
that all elements of C are smaller than all elements of B \ C. Let M′ be the set
of PBW-monomials with respect to B, of degree > 0. We equip C ×M′ with the
following well-order:

(X, u) ≤ (Y, v) := deg(u) < deg(v) or

(deg(u) = deg(v) and X < Y ) or

(deg(u) = deg(v) and X = Y and u ≤ v),

where the last alternative refers to the order on M introduced in the proof of
Lemma 3.2. Again, we endow the collection of all finite subsets of C ×M′ with
the well-order of Lemma 3.3, and define the support of a general element

r =
∑

Y ∈C,u∈M′

γY,uY ⊗ u ∈ k⊗ U(g)g

by
supp(r) := {(Y, u) ∈ C ×M′ | γY,u 6= 0}.

Denote by π : k⊗U(g)g → U(g) the multiplication map. We proceed by induction
on supp(r) to show that π(r) ∈ k implies π(r) ∈ [k, k]. Therefore, let r 6= 0
as above be such that π(r) ∈ k, and assume that for all s ∈ k ⊗ U(g)g with
supp(s) < supp(r) we have π(s) ∈ k ⇒ π(s) ∈ [k, k]. By the PBW-theorem
there exists a pair (Y, u) ∈ supp(r) such that u starts with X < Y ; note that
this inequality implies X ∈ k by construction. Writing u = Xu′ for some PBW-
monomial u′ of degree deg(u)− 1, we find

π(r) = π(r − γY,uY ⊗Xu′ + γY,uX ⊗ Y u′ + γY,u[Y,X]⊗ u′).

Now either u′ = 1 or u′ ∈ M′. In the latter case, the argument s of π on
the right-hand side is an element of k ⊗ U(g)g, and its support is smaller than
supp(r), so that the induction hypothesis applies. If u′ = 1, then the last term
of γY,u[Y,X] ⊗ u′ of s is mapped into [k, k] by π, and the induction hypothesis
applies to the remainder of s. In either case, we find that π(r) ∈ [k, k]. 2
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This concludes the proof of Theorem 3.1. Theorem 3.2 is an easy consequence
of the above proof, the proof of Theorem 2.1, and the Realization Theorem (13).
As an analogue to Proposition 2.1 we have the following proposition.

Proposition 3.1: Let g, k,m,Y, σ and Yσ be as in Proposition 2.1. Then φYσ ,η

is a polynomial realization for any choice of η ∈ (k/[k, k])∗. Indeed, if ad(m)dX =
0, then the coefficients of φYσ ,η(X) contain only monomials of total degree < d.

Proof: The proof of (5, Theorem 1.7) shows that, for given X ∈ g, not only
χi(Y

m
σ X) = 0 for |m| :=

∑n
i=1mi sufficiently large, but also πk(Y

m
σ X) = 0 for

|m| sufficiently large. 2

In the notation for parabolic subalgebras of split semisimple Lie algebras at
the end of Section 2, we have p− = h̃ ⊕ [p−, p−], where h̃ is the subalgebra of h

spanned by the Chevalley generators Hα for α ∈ Π\Π0. This shows that we may
identify (p−/[p−, p−])∗ with h̃∗, as we will do in the examples in the following
section.

4. Implementation and Examples

Using de Graaf’s algorithms for Lie algebras (9; 10), we implemented a function
Blattner taking as input a finite-(say, l-)dimensional Lie algebra g, an ordered
basis X1, . . . , Xl of g, the codimension n of a subalgebra k which must be spanned
by the Xi with i ≤ l − n, an element η of k∗ represented by its values on those
Xi, and the degree d up to which the coefficients of the realization must be
computed. The program does not check whether the Xi with i ≤ k do indeed
span a basis of a subalgebra of g, or whether the element η really vanishes on
[k, k] as it should by Lemmas 3.1 and 3.5 to define a cocycle of g with values in
A; but if these preconditions are fulfilled, then Blattner returns a pair whose
first component is the list of values of φ(Xl−n+1,...,Xl),η on X1, . . . , Xl, truncated
at degree d and regarded as elements of the Weyl algebra W generated by the xi

and the ∂i, which is the second component of the output of Blattner. By means
of some GAP-session printouts we show how effective Theorem 3.2 really is. Let
us start with an easy example.

Example: Let g be sl2, denote by E,H, F the usual Chevalley basis of g, and
let b be the Borel subalgebra spanned by H and F . Identifying an element of
(b/[b, b])∗ with its value on H, we obtain a one-parameter family (φE,λ)λ∈K

of polynomial representations of (g, b). Consider the following GAP-session for
λ = 5.

gap> g:=SimpleLieAlgebra("A",1,Rationals);;

gap> B:=Basis(g,Basis(g){[2,3,1]});;

gap> L:=Blattner(g,B,1,[0,5],2);

[ [ [(5)*x_1+(-1)*x_1^2*D_1],
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[(5)*<identity ...>+(-2)*x_1*D_1],

[(1)*D_1] ],

<algebra-with-one of dimension infinity over Rationals> ]

The default basis of sl2 in GAP is (E,F,H); the second input line reorders this
to (F,H,E), so that the first two span b. By Proposition 3.1 the coefficients of
φE,λ only contain monomials of degree ≤ 2, which justifies the last parameter to
Blattner in the third input line. Note that we find precisely the realization of
the introduction.

If, as in the above example, the output of Blattner is really a polynomial
realization, then one can use that output in further computations. For example,
we implemented a function ClosureUnderMult, whose first two arguments are
lists L andM of elements of the third argumentW , the Weyl algebra constructed
above; and whose last argument is a function determining the multiplication
to be used. Here one can think of the following multiplications: the ‘normal’
multiplication in W , or the commutator in W , or the action of elements of
W on polynomials in the xi, implemented under the name WeylAction. The
function ClosureUnderMult computes the smallest subspace ofW containing the
elements of M and closed under multiplication from the left with the elements
of L—provided that this space is finite-dimensional, which the program does not
check.

Example (continued): The next few lines show that 1 generates a 5-dimensional
sl2-submodule of K[x].

gap> M:=ClosureUnderMult(L[1],[One(L[2])],L[2],

> function(d,p) return(WeylAction(d,p,L[2])); end);;

gap> Basis(M);

Basis( <vector space of dimension 6 over Rationals>,

[ [(1)*<identity ...>], [(1)*x_1], [(1)*x_1^2], [(1)*x_1^3],

[(1)*x_1^4], [(1)*x_1^5] ] )

A somewhat more complicated example is the following.

Example: Let g be the split simple Lie algebra of type G2, let h be a split Cartan
subalgebra of g, and let b be a Borel subalgebra of g containing h. The following
GAP-session computes a realization of (g, b) with cocycle corresponding to the
element of h∗ which has values 1, 1 on the Chevalley basis of h.

gap> g:=SimpleLieAlgebra("G",2,Rationals);;

gap> B:=Basis(g,Basis(g){Concatenation([7..14],[1..6])});;

gap> L:=Blattner(g,B,6,[0,0,0,0,0,0,1,1],6);;

Here 6 is the nilpotence degree of the action of u+ on g. Including the complete
realization here would not be very instructive. Instead, we check that the first
component of L does indeed spans a Lie algebra:
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gap> ClosureUnderMult(L[1],L[1],L[2],Lie);

<vector space over Rationals, with 14 generators>

Finally, we construct the irreducible module of highest weight (1, 1) as in the
third example of Section 4; see Section 5 for an explanation of why these finite-
dimensional irreducible modules emerge in this way.

gap> M:=ClosureUnderMult(L[1],[One(L[2])],L[2],

function(d,p) return(WeylAction(d,p,L[2])); end);

<vector space over Rationals, with 64 generators>

Now consider an example where the isotropy subalgebra is parabolic, but not
a Borel subalgebra.

Example: Let g be sl3, and let p− be the parabolic subalgebra corresponding to
Π0 = {α2} in the notation of page 5 and using the standard labelling of (4).
Then p− = [p−, p−]⊕KH1, where H1 is the element in the Chevalley basis of h

corresponding to α1. The following GAP-session computes a realization of (g, p−)
with cocycle whose value on H1 is 2.

gap> g:=SimpleLieAlgebra("A",2,Rationals);;

gap> B:=Basis(g,Basis(g){[2,4,5,6,7,8,1,3]});;

gap> L:=Blattner(g,B,2,[0,0,0,0,2,0],2);

[ [ [(-1)*x_1*D_2], [(2)*x_1+(-1)*x_1*x_2*D_2+(-1)*x_1^2*D_1],

[(-1)*x_2*D_1], [(-1)*x_1*x_2*D_1+(2)*x_2+(-1)*x_2^2*D_2],

[(2)*<identity ...>+(-2)*x_1*D_1+(-1)*x_2*D_2],

[(1)*x_1*D_1+(-1)*x_2*D_2], [(1)*D_1], [(1)*D_2] ],

<algebra-with-one of dimension infinity over Rationals> ]

gap> ClosureUnderMult(L[1],L[1],L[2],Lie);

<vector space over Rationals, with 8 generators>

This shows that L[2] is indeed the basis of an 8-dimensional Lie algebra. Leaving
out the zero order terms we retrieve one of the primitive Lie algebra’s from Lie’s
classification (15).

gap> M:=ClosureUnderMult(L[1],[One(L[2])],L[2],

> function(d,p) return(WeylAction(d,p,L[2])); end);;

gap> List(Basis(M));

[ [(1)*<identity ...>], [(1)*x_1], [(1)*x_2], [(1)*x_1^2],

[(1)*x_1*x_2], [(1)*x_2^2] ]

The following example shows that the applications of our Realization Formula
are not restricted to semisimple g.

Example: Let g = sl2 n n, where n is an Abelian two-dimensional ideal and
irreducible as an sl2-module, and let b be the Borel subalgebra of sl2 spanned by
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H and F . Then n+KE is a subalgebra of g complementary to b; let X−1, X1 be a
basis of n satisfying [H,Xi] = iXi, i = −1, 1. The following GAP-session computes
the polynomial realization φ(E,X1,X−1),η of the pair (g, b), where η ∈ (b/[b, b])∗

is determined by its value 5 on H. The printout below starts directly after the
construction of g with ordered basis B = (H,F,E,X1, X−1).

gap> L:=Blattner(g,B,3,[5,0],2);

[ [ [(5)*<identity ...>+(-2)*x_1*D_1+(-1)*x_2*D_2+(1)*x_3*D_3],

[(5)*x_1+(-1)*x_1^2*D_1+(-1)*x_2*D_3],

[(-1)*x_3*D_2+(1)*D_1],

[(1)*D_2],

[(1)*D_3] ],

<algebra-with-one of dimension infinity over Rationals> ]

5. Conclusion

As Richter explains in (18), it is no coincidence that 1 generates a finite-dimensional
module in the first two examples of Section 4; this is a consequence of the cele-
brated Borel-Weil theorem (3). Indeed, suppose that K is an algebraically closed
field of characteristic 0, let G be a connected reductive affine algebraic group over
K, and let B− be a Borel subgroup of G. To any algebraic group homomorphism
λ from B− into the multiplicative group of K we associate the algebraic line bun-
dle Lλ := G ×B− Kvλ over G/B−; here vλ spans the 1-dimensional B−-module
corresponding to λ. The group G acts on Lλ in a natural way, hence also on the
space Vλ of regular sections of Lλ. The Borel-Weil theorem states that if λ is
dominant, then Vλ is a finite-dimensional irreducible module of highest weight
λ.

Suppose that λ is indeed dominant, and let s0 : G/B− → Lλ be a highest
weight vector in Vλ. Let N+ be the unipotent radical of the Borel subgroup
opposite to B−. Then N+ is isomorphic to an affine space, and the map ι : n 7→
nB− is an open dense embedding of N+ into G/B− (2). We claim that s0 does
not vanish on ι(N+). Indeed, as s0 is a highest weight vector, we have ns0 = s0

for all n ∈ N+, or, equivalently,

ns0(n
−1gB−) = s0(gB−) for all n ∈ N+, g ∈ G.

As s0 is non-zero, it cannot vanish on all of the open dense subset ι(N+) of
G/B−; hence there exists an n0 ∈ N+ such that s0(n0B−) 6= 0. Replacing g by
nn0 in the equation above, we find ns0(n0B−) = s0(nn0B−). The left-hand side
is non-zero by choice of n0, hence so is the right-hand side. We conclude that s0

indeed does not vanish on N+.
From this it follows that if s is any section of Lλ, then its restriction to ι(N+)

can be written as fs0 for some regular function f on the affine space N+. The
representation of G on sections translates into a representation of G on these
coefficients f , and the associated action of g on those functions is given by the
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first order differential operators computed in Section 4. This explains why 1,
which corresponds to the section s0, is the highest weight vector of a finite-
dimensional irreducible module of highest weight λ. A similar argument should
hold in the case where B− is replaced by a larger parabolic subgroup, explaining
the finite-dimensional module constructed in Example 4.4.

On the whole, it is fair to say that the objects constructed in the paper at hand
have already been known abstractly for a long time. Our contribution is their
explicit and automatic computation in a general setting. Our GAP-program—a
copy of which can be obtained by sending an e-mail to the author—has proved a
useful tool in the construction of Lie algebras of differential operators, and could
very well be useful in the construction of new quasi-exactly solvable Hamiltoni-
ans.
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