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Abstract

For a finite-dimensional representation ρ : G → GL(M) of a group G the diagonal
action of G on Mp, p-tuples of elements of M , is usually poorly understood. The
algorithm presented here computes a geometric characteristic of this action in the
case where G is connected and reductive, and ρ is a morphism of algebraic groups:
The algorithm takes as input the weight system of M , and it returns the number of
irreducible components c(Mp) of the null-cone of G on Mp for large p. The paper
concludes with a theorem that if the characteristic is zero and if G is semisimple,
then only few M have the property that c(Mp) is small for all p.

1. Introduction

Though for many classical geometric objects ‘normal forms’ under the action
of a group G are known—think of complex n × n-matrices under conjugation or
bilinear forms on Cn under the natural action of GLn—very little is usually known
about the diagonal action of that group on p-tuples of those objects. This paper
explains how to compute an interesting geometric characteristic of the group action
on p-tuples for large p: the number of components of the null-cone.

More specifically, let K be an algebraically closed field of characteristic 0 and
let G be a group. Let M be a finite-dimensional vector space over K and ρ : G →
GL(M) a representation of G. Then an element of M is called nilpotent if it cannot
be distinguished from 0 by G-invariant polynomials on M .

Example 1.1. (1) If G := SLn acts by conjugation on M := Mn, the space
of n × n-matrices, then the algebra of invariant polynomials is generated
by the coefficients of the characteristic polynomial of an element of Mn, so
that the nilpotent elements of Mn are precisely the nilpotent matrices.

(2) If G := SLn × SLm acts by conjugation on M := Mn,m, then invariant
polynomials are constant if n 6= m and polynomials in the determinant if
n = m. In the first case, all matrices are nilpotent elements, and in the
second case, a matrix is nilpotent if and only if it is singular.

The set of nilpotent elements form a G-stable, closed cone in M , called the
null-cone in M and denoted NG(M) or N (G) if G is clear from the context. We
denote the number of irreducible components of N (M) by cG(M) = c(M). We are
interested in the null-cone N (Mp) in Mp, the direct sum of p copies of M , on which
G acts diagonally. It can be shown that c(Mp) is an ascending function of p which
stabilises at some finite p0; that is: for all p ≥ p0 the null-cone N (Mp) has the same
number of irreducible components as N (Mp0). This phenomenon was first observed
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by Kraft and Wallach [8] in the case of reductive group actions to be treated soon;
that it occurs in general is proved in [4]. The present paper presents an algorithm
to compute the limit limp→∞ c(Mp) modules M over connected, reductive groups.

Example 1.2. (1) The null-cone of SLn by simultaneous conjugation on Mp
n is

always irreducible and its elements are precisely those p-tuples of nilpotent
matrices that can be simultaneously conjugated into upper triangular form;
it follows readily that c(Mp) = 1 for all p. Representations M for which
limp→∞ c(Mp) is small are rare; see Section 4.

(2) The null-cone of SLn × SLm on Mp
n,m, where we may assume that n ≥ m,

is all of Mp
n,m for p < n/m, while it has exactly m irreducible components

for p > dn/me, given by

Ck :={(A1, . . . , Ap) | there exists a k-dimensional subspace

U of Km for which dim
∑

i

(AiU) < k
n

m
}, k = 1, . . . ,m;

hence limp→∞ c(Mp) = m. This fact, as well as what happens for p =
dn/me, is explained in [4].

The number m of irreducible copies in the second example was first found—
for concrete values m and n—using the algorithm that I want to explain here.
Section 2 recalls the results of Kraft and Wallach at the heart of the algorithm.
In Section 3 we see how these results lead to the problem of counting open cells
in the complement of a real hyperplane arrangement in a Weyl chamber. I give a
short proof of a version of Zaslavsky’s formula for this number of cells [14]—and
the same proof works, in fact, for Zaslavsky’s original formula—and use it in said
algorithm computing limp→∞ c(Mp). Finally, in Section 4 we apply our insights
to the problem of describing all M for which limp→∞ c(Mp) is small; we saw one
example of such a module above.

2. Components of the null-cone on Mp

We fix a connected, reductive algebraic group G over an algebraically closed field
K, and a finite-dimensional rational G-module M—for general theory of algebraic
groups and their representations, I refer to [2, 13]. In the examples given in the In-
troduction, G and M are of this type. In this setting, there is a beautiful geometric
tool for describing the null-cone N (M): If there exists for v ∈ M a one-parameter
subgroup (1-PSG) λ : K∗ → G such that limt→0 λ(t)v is zero—by which we simply
mean that λ(t)v is of the form

∑d
i=1 tivi with vi ∈ M—then clearly v is nilpotent.

The Hilbert-Mumford criterion [10, 12] states that the converse is also true, that is:
for every nilpotent vector v ∈ M there exists a 1-PSG λ such that limt→0 λ(t)v = 0.

This remarkable characterisation of the null-cone of a reductive group represen-
tation found an important application in the notion of ‘optimal 1-PSGs’, that is:
those that steer a given nilpotent vector to zero in the most efficient way; see [12] and
the references there. Nilpotent vectors having equivalent optimal 1-PSGs form a
stratum of a stratification of the null-cone by smooth, irreducible locally closed sub-
varieties [7]. This stratification can be computed with an algorithm given in [11]. In
the present paper, however, we concentrate on more modest geometric information,
but for null-cones in large representations: we want to determine limp→∞ c(Mp),
the number of irreducible components of Mp for large p.
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Here is Kraft and Wallach’s set-up for this problem: Let T be a maximal torus
in G, denote by X = X(T ) the group of characters T → K∗, and denote by
Y = Y (T ) the group of 1-PSGs K∗ → T . Then X and Y are finitely generated
free abelian groups, written additively, dual to each other relative to the natural
pairing 〈., .〉 : X ×Y → X(K∗) = Z given by composition; here X(K∗) is identified
with Z by mapping the generator s 7→ s of X(K∗) to 1 ∈ Z.

Example 2.1. In SLn we may choose T to consist of the unimodular diagonal
matrices. Then the 1-PSGs α̌i : K∗ → T, i = 1, . . . , n − 1 sending s ∈ K∗ to the
diagonal matrix diag(1, . . . , 1, s, s−1, 1, . . .) form a basis of Y , and the characters
ωi : T → K∗, i = 1, . . . , n− 1 mapping t to t1,1 · · · ti,i form the dual basis of X.

For χ ∈ X we let Mχ := {v ∈ M | tv = χ(t)v for all t ∈ T} be the weight space
of χ in M ; M is the direct sum of these as χ runs through the weight set

XM := {χ ∈ X | Mχ 6= 0}.

For λ ∈ Y we set

M(λ) := {v ∈ M | lim
s→0

λ(s)v = 0} and

XM (λ) := {χ ∈ XM | 〈χ, λ〉 > 0};

a set of the latter form is called a half of XM . Note that M(λ) is the sum of all Mχ

with χ ∈ XM (λ). By the Hilbert-Mumford criterion and the conjugacy of maximal
tori in G, the null-cone N (M) is the union of all sets of the form

C(λ) := GM(λ)

as λ runs through Y . As C(λ) is the image under G×M(λ) under the action, it is
an irreducible set. Moreover, from the fact that M(λ) is stable under the parabolic
subgroup

P (λ) := {g ∈ G | lim
t→0

λ(t)gλ(t)−1 exists}

it follows that C(λ) is closed. We have thus covered N (M) by closed, irreducible
subsets, so the irreducible components of the null-cone are among them. However,
there are still inclusions among the C(λ); having four different causes:

(1) A half XM (λ) may be equal to XM (λ′); this is equivalent to the statement
that 〈χ, λ〉 has the same sign as 〈χ, λ′〉 for all χ ∈ XM . In this case we have
C(λ) = C(λ′).

(2) A half XM (λ) may be strictly contained in XM (λ′) for some other λ′; then
clearly C(λ) ⊆ C(λ′). We call XM (λ) a maximal half if it is not strictly
contained in any other half.

(3) Suppose that XM (λ) and XM (λ′) are distinct maximal halfs, but that they
are conjugate by an element of the Weyl group W := NG(T )/T . Then the
action of G ‘smears out’ M(λ) and M(λ′) to the same set C(λ) = C(λ′).

(4) Finally, even if XM (λ) and XM (λ′) are maximal halfs that are not conju-
gate under the Weyl group, C(λ) may be equal to, or strictly contained in
C(λ′)—for instance, G may have a dense orbit in M , in which case some
of the C(λ) are all of M .

Kraft and Wallach showed that the last phenomenon does not occur if we pass
from M to a direct sum of sufficiently many copies. More precisely, let p be a
natural number and consider the representation of G on the direct sum Mp of
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p ≥ 1 copies of M . Note that XMp = XM and therefore XMp(λ) = XM (λ); we will
continue to write XM and XM (λ), and we write Cp(λ) for C(λ) in Mp.

Proposition 2.2 (Kraft and Wallach [8]). For p sufficiently large the Cp(λ) for
which XM (λ) are maximal halfs are precisely the irreducible components of the null-
cone N (Mp), and Cp(λ) = Cp(λ′) if and only if XM (λ) and XM (λ′) are conjugate
under W .

For completeness, I include a version of Kraft and Wallach’s proof.

Proof. Assume that Cp(λ′) contains Cp(λ). Choose an m = (v1, . . . , vp) in Mp(λ)
such that the vi span M(λ); this is possible if p is large enough. By assumption
there exists a g ∈ G such that gm ∈ Mp(λ′), and as the vi span M(λ) we then have
gM(λ) ⊆ M(λ′). As we noted before, M(λ) is stable under the parabolic subgroup
P = P (λ) containing T , and similarly M(λ′) is stable under P ′ = P (λ′), which also
contains T . A consequence of the Bruhat decomposition is that G =

⋃
w∈W P ′w̃P

for any two parabolic subgroups P and P ′ containing T , hence we may write g =
p′w̃p for some p′ ∈ P ′, w ∈ W,p ∈ P . But then we find w̃M(λ) ⊆ M(λ′), so that
XM (λ) and XM (λ′) are W -conjugate. �

In fact, Kraft and Wallach prove something slightly more general, and give an
explicit upper bound for the smallest p with this property. This is only the starting
point of their paper; they proceed to exploit these observations in many concrete
examples and special cases such as θ-representations. In the present paper we use
the following direct consequence of their proposition: the number limp→∞ c(Mp) of
irreducible components of N (Mp) for large p is equal to the number of W -orbits on
maximal halfs.

3. Counting components and faces

Retaining the notation G, T, X = X(T ), Y = Y (T ),M,XM , XM (λ) of the previ-
ous section, we now face the problem of counting W -orbits on maximal halfs XM (λ).
For the sake of geometric intuition it is convenient to work with XR := X ⊗Z R
and YR := Y ⊗Z R, whose elements we call virtual characters and virtual 1-PSGs,
respectively. The pairing 〈., .〉 extends to a non-degenerate R-bilinear pairing
XR × YR → R, and we extend our notation XM (λ) to virtual 1-PSGs λ ∈ YR.

Let λ be a non-zero virtual 1-PSG. By definition, XM (λ) is the intersection of
XM with the open half-space in XR where λ is positive. Let S be the set of weights
in XM where λ vanishes. Then any virtual 1-PSG λ′ lying close enough to λ in
the subspace {µ ∈ YR | 〈S, µ〉 = 0} of YR will define the same half as λ, and as
said subspace is defined by rational equations, it follows that XM (λ) = XM (λ′) for
some non-virtual λ′ ∈ Y . In other words, we do not introduce any new halfs by
varying λ over YR rather than over Y .

Next note that a λ ∈ YR vanishing on some non-zero weight γ of M will never
define a maximal half: by perturbing λ slightly, we ‘gain’ γ to the positive half-space
defined by λ, without losing any weights of M already lying there. We conclude
that, to count the maximal halfs of XM , we may restrict our attention to the virtual
1-PSGs lying in

Z := YR \
⋃

γ∈XM\{0}

γ⊥,
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where γ⊥ denotes the annihilator in YR of γ. Now one has XM (λ) = XM (λ′) if
and only if λ and λ′ lie in the same connected component of Z, so if F is such a
component, then we may write XM (F ) for XM (λ), λ ∈ F . In accordance, we call
the component F maximal if XM (F ) is a maximal half of XM . We are thus led to
count W -orbits on maximal components of Z.

If XM = −XM , then all components of Z are maximal, as then every virtual
1-PSG λ ∈ Z has exactly half of the non-negative weights in M in its positive
halfspace. This is the case, for instance, if all irreducible subquotients of M are
self-dual.

It is the problem of counting W -orbits on all components of Z, rather than
just those on maximal components, that we first deal with, regardless of whether
XM = −XM . To this end, choose a system ∆ = {α1, . . . , αr} ⊆ X of simple roots
in the root system of (G, T ), let P+ ⊆ YR be the (dual) Weyl chamber defined by

P+ := {λ ∈ YR | 〈αi, λ〉 ≥ 0 for all i},

and let P ◦
+ be the interior of P+. Recall that if G is semisimple, then the αi form a

basis of XR, and the closed, convex cone P+ contains non non-zero subspaces of YR.
In general we write T 1 for the maximal torus in T of the derived subgroup (G, G),
and T 2 for the connected component of the centre of G. Then the multiplication
map T 1 × T 2 → T is surjective and has a finite kernel, so that the corresponding
map Y (T1) × Y (T2) → Y (T ) is an injective map between free Abelian groups of
the same rank. Tensoring with R yields a linear isomorphism YR ∼= Y 1

R ⊕Y 2
R , where

Y i = Y (Ti). Similarly, the injective pull-back X(T ) → X(T1) × X(T2) yields a
linear isomorphism XR ∼= X1

R ⊕X2
R, where Xi = X(Ti). Under this identification

Xi
R is the annihilator of Y 2−i

R for i = 1, 2, and X1
R is spanned by the simple roots.

We find that in this case the Weyl chamber equals

P+ = ((P+) ∩ Y 1
R )× Y 2

R ,

where the first factor is a cone not containing non-zero subspaces of Y 1
R , as before.

The following lemma shows that we need only count the components of Z that
intersect P+.

Lemma 3.1. Every W -orbit on components of Z contains a unique component that
intersects P+. This component intersects P ◦

+ in a connected component of P ◦
+ ∩Z.

Proof. It is well known that P+ is a fundamental domain of the W -action on YR,
and that the unique W -invariant map φ : YR → P+ extending the identity on P+

is a topological quotient map by W . This readily implies that every W -orbit on
connected components of Z contains an element intersecting P+. Now let F be
such a component intersecting P+. Then φ(F ), being the image of a connected set
under a continous map, is connected, and by the W -stability of XM it is contained
in Z ∩ P+. Moreover, φ(F ) contains φ(F ∩ P+) = F ∩ P+, which is a connected
component of Z ∩ P+, and together with the connectedness of φ(F ) this implies
φ(F ) = F ∩ P+. It follows that if w ∈ W and wF intersects P+, as well, then
wF ∩ P+ = φ(wF ) = φ(F ) = F ∩ P+, so F and wF are not disjoint and hence
equal. The last statement is obvious. �

Thus counting the W -orbits on components of Z boils down to counting the
connected components of

Z+ := Z ∩ P ◦
+.
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It is good to describe this set in more detail: one obtains Z+ by leaving out from
the closed convex cone P+ all hyperplanes bounding it, as well as all hyperplanes
of the shape γ⊥ with γ ∈ XM . However, many of the latter hyperplanes do not
intersect P ◦

+ at all, can therefore be ignored in the construction of Z+. We call a
virtual weight γ ∈ XR relevant if γ 6= 0 and if γ⊥ does intersect P ◦

+.

Lemma 3.2. A virtual weight γ ∈ XR is relevant if and only if it is not of the form

γ =
∑

i

ciαi with ∀ici ≥ 0 or ∀ici ≤ 0.

In other words, γ is relevant if and only if it does not lie in the convex cone
spanned by the positive simple roots αi, nor in the convex cone spanned by the
−αi.

Proof. If γ 6= 0 is in the convex cone spanned by the αi and if λ ∈ P ◦
+, then

〈αi, λ〉 > 0 for all αi and so 〈γ, λ〉 > 0; it follows that γ and −γ are both not
relevant.

On the other hand, suppose that γ is in none of the two cones described above.
Write γ = γ1 + γ2 where γi ∈ Xi

R, and write γ1 =
∑

i ciαi. Suppose first that γ2 6=
0. Choose any λ1 ∈ P ◦

+ ∩ Y 1
R , and choose a λ2 ∈ Y 2

R such that 〈γ2, λ2〉 = −〈γ1, λ1〉.
We then have λ = λ1 + λ2 ∈ P ◦

+ and 〈γ, λ〉 = 0, so γ is relevant.
If γ2 = 0, then the ci do not all have the same sign by assumption; suppose that

ci− < 0 and ci+ > 0 and let (xi) be the basis of Y 1
R dual to the αi (and vanishing on

X2
R). Let λ1 be as before, and compute 〈γ, λ〉 =: c. If c ≤ 0, then λ := λ1 − c

ci+
xi+

annihilates γ and lies in P ◦
+(∩Y 1

R ), while if c ≥ 0 then λ := λ1 − c
ci−

xi− does the
job. In either case, γ is relevant. �

We construct the set Xrel
M of relevant rays as follows:

Xrel
M := {R+γ | γ ∈ XM is relevant};

for γ ∈ Xrel
M and λ ∈ YR we will use the notation 〈γ, λ〉 for the sign of 〈γ′, λ〉 with

γ′ any representative of γ. We are now ready for our first main result. Let L be
the collection of all sets of the form

S⊥ ∩ P+ where S ⊆ Xrel
M ∪∆,

and order L partially by inclusion. In other words: an element of L is the inter-
section of some hyperplanes of the form γ⊥ with γ ∈ XM relevant and some of
the hyperplanes bounding P+, intersected with the cone P+. The lattice has two
types of elements: V ∈ L is either a linear subspace of YR, or else it is a proper
convex polyhedral cone in its linear span. It is easy to see that L is a lattice with
smallest element O := (XM ∪ ∆)⊥ (note that this subspace is contained in P+)
and largest element P+. Of course, if XM ∪ ∆ spans XR—in particular, if G is
semisimple—then O is the zero space.

From the lattice L we construct its set of faces, as follows: for V ∈ L let F(V )
be the set of connected components of

V \
⋃

W∈L,W(V

W,

and let F be the union of all F(V ), V ∈ L. Let #(V ) be the cardinality of F(V ),
so that Z+ has #(P+) connected components. The numbers #(V ) can now be
computed as follows.
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Theorem 3.3 (Zaslavsky type formula). For V ∈ L let χ(V ) be (−1)dim V if V is
a linear subspace of YR and 0 if V is a proper polyhedral cone. Then∑

W∈L,W⊆V

(−1)dim W #(W ) = χ(V )

for all V ∈ L.

Proof. Let V be an element of L and let π : YR → YR/O be the canonical projection.
The set

{π(F ) | F ∈ F , F ⊆ V } ∪ {∞}
defines a CW-complex on the one-point compactification π(V )∪{∞} of π(V ). If V
is a proper cone, then π(V )∪{∞} is homotopic to a line segment with endpoints 0
and ∞, hence has Euler characteristic 1. If V is a linear subspace, then π(V )∪{∞}
is homeomorphic to a sphere of dimension dim(V ) − dim(O), so that it has Euler
characteristic 1 + (−1)dim(V )−dim(O). In either case, we find∑

F∈F,F⊆V

(−1)dim F = χ(V ),

where we left out {∞} and multiplied by (−1)dim O. Grouping together the faces
F for which the minimal element of L containing F is the same, we obtain the
formula of the theorem. �

This theorem allows for the following algorithm for computing the number of
W -orbits on (not necessarily maximal) components of Z:

(1) Construct the set Xrel
M of relevant rays;

(2) Construct the lattice L;
(3) Let ζ : L×L → {−1, 0, 1} be the matrix the matrix whose rows and columns

are labelled by the elements of L with entries ζ(V,W ) = (−1)dim W if W is
contained in V and 0 otherwise;

(4) Let χ : L → {−1, 0, 1} be the column vector defined earlier;
(5) Then # is the solution of the linear system ζ ·# = β.

As noted before, this algorithm counts the number limp→∞ c(Mp) in case Xrel
M =

−Xrel
M , while otherwise we still have to select the maximal components among the

#(P+) components thus found.
If G = T , then the Weyl group is trivial and we recover Zaslavsky’s formula [14]

for the number of cells in the complement of a hyperplane arrangement. It is not
hard to adapt the proof above to the case where the hyperplanes are not required
to pass through 0, so this gives an efficient proof of his formula.

Example 3.4. Suppose that G = GL2 and M = K2. Choose for T the torus
of diagonal matrices; then T 1 is the maximal torus in SL2 consisting of diagonal
matrices with determinant 1 and T 2 consists of multiples of the identity matrix.
Note that T 1 ∩ T 2 = {±I}. As a basis for Y 1

R we choose the 1-PSG λ1 : t 7→
diag(t, t−1) and as a basis for Y 2

R we choose the 1-PSG λ2 : t 7→ diag(t, t). As a
basis for X1

R we choose the weight γ1 : diag(t, t−1) 7→ t and for X2
R we choose the

weight γ2 : diag(t, t) 7→ t.
On the other hand, the two characters χi : diag(t1, t2) 7→ ti form a basis of X.

The pull-back X → X1×X2 maps χ1−χ2 to 2(γ1, 0) and χ1 +χ2 to 2(0, γ2). This
allows us to view γ1, γ2 as the basis (χ1 − χ2)/2, (χ1 + χ2)/2 of XR, which is dual
to the basis of YR given by λ1, λ2.
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Figure 1. Weight system (left) and subspace lattice (right).
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Figure 2. Weight system (left) and subspace lattice (right).

The weight vectors of T in M are the standard basis vectors e1, e2, with weights
χ1 = γ1 + γ2 and χ2 = −γ1 + γ2, respectively. In Figure 1 these weights in XR are
drawn on the left, and the hyperplanes (lines) in YR annihilating them are drawn
on the right, together with the closed half plane P+. The lattice F has 5 elements,
depicted in the figure. The minimal element is the origin, the λ2-axis is a linear
subspace of YR, and the other elements are proper cones. Thus the linear system
to be solved is 

1 0 0 0 0
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 −1 −1 −1 1




#1

#2

#3

#4

#5

 =


1
−1
0
0
0

 ,

and we find # = (1, 2, 1, 1, 3)t as is obvious from the picture. Note however, that
only one of the 3 components of Z+ is maximal, so the null-cone in any Mp is
irreducible. In fact, it is clearly the whole space, as we have limt7→0(tI)(v1, . . . , vp) =
0 for all v1, . . . , vp ∈ M .

Example 3.5. Let G = SL3 and let M be the space of homogeneous polynomials
in x1, x2, x3 of degree 2. Let T be the torus of Example 2.1. Then the weight
vectors in M are the monomials xixj . Figure 2 depicts their weights and the root
system on the left. Note that only two weights are relevant, and one is a negative
scalar multiple of the other. The linear system ζ# = β to be solved is identical
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to that of the previous example, exept that now all non-minimal elements of L are
cones (and not subspaces), so that β = (1, 0, 0, 0, 0)t. We find that Z+ has two
connected components (this is obvious from the picture), and both are maximal.
Hence N (Mp) has two irreducible components for p � 0. In fact, one may describe
these two components by the corresponding quadrics in P2, as follows: If (q1, . . . , qp)
lies in N (Mp), then all qi define singular quadrics. Assume that all are of rank 2, so
that each qi defines a pair of lines, whose intersection is the radical of qi. The two
components of N (Mp) are now described as follows: the first component consists of
all p-tuples (qi) for which all radicals coincide, and the second component consists
of all p-tuples for which all line pairs share a line [4].

A way to compute the number of maximal components of Z+ is now the following:
(1) First compute #(P+) as above.
(2) Set S := ∅.
(3) Generate a point λ in P+ randomly, and compute its corresponding sign

vector: the function s : Xrel
M → {−1, 0, 1} that assigns to γ ∈ XM the sign

〈γ, λ〉. Discard s if it contains a 0—generically, this will not be the case—
and otherwise add s to S; note that s uniquely determines the connected
component of Z+ containing λ.

(4) Repeat step 3 until |S| = #(P+). We have then found representatives for
all connected components of Z+.

(5) Discard those s ∈ S for which there exists a γ ∈ Xrel
M such that s(γ) = −1

and the vector s′ obtained by flipping s(γ) to +1 while keeping the other
entries unchanged is also in S.

(6) The remaining sign vectors are representatives of the maximal components
of Z+.

The last steps are justified by the following lemma.

Lemma 3.6. If F is a component of Z+ which is not maximal, then there exist
a γ ∈ Xrel

M and a component F ′ of Z+ such that the sign vector of F ′ is obtained
from that of F by flipping the γ-entry of the latter from −1 to 1.

Proof. As F is not maximal, there exists a component F ′′ of Z+ for which XM (F ′′)
properly contains XM (F ). Let λ ∈ F, µ ∈ F ′′ be points such that the line segment
ν(t) := (1 − t)λ + tµ, t ∈ [0, 1] does not intersect an element of L of codimension
> 1 in P+ (such points λ, µ exist). Let t0 be the smallest t for which ν(t) does not
lie in F , and let V be the unique element of L containing ν(t0). Let γ ∈ XM be
such that γ⊥ ∩ P+ = V ; the ray R+γ then lies in Xrel

M . If γ would be in XM (F ),
i.e., if it would be positive on F , then it would be negative on ν(t) for t > t0,
hence in particular γ would not lie in XM (F ′′)—contrary to our assumption that
the latter set contains XM (F ). Hence γ 6∈ XM (F ). The same argument shows that
no negative multiple of γ can lie in XM (F ), so that −R+γ 6∈ Xrel

M . Now let F ′ be
the component of Z entered by ν(t) at t = t0. Then the above shows that

XM (F ′) = XM (F ) ∪ (Rγ ∩XM ),

i.e., the sign vectors of F and F ′ are related as claimed. �

The algorithm above was used to compute the number of connected components
of N (Mp) for G = SLn × SLn acting on M = Mn for small values of n; this lead
to the description of this null-cone in the Introduction [4].
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We conclude this section with some remarks on the combinatorial-computational
aspects of our insights so far. Of course, the algorithm above is rather naive. More
advanced algorithms for cell enumeration in a real hyperplane arrangement are
well known—see, e.g., [1] and the textbook [5]—and could be adapted to our needs.
However, I did not find literature addressing the problem of counting only maximal
cells. More specifically, it makes sense to define a subcomplex of F as follows: take
those cells whose sign vector is maximal relative to the entrywise partial order on
{−1, 0, 1}Xrel

M × {0, 1}∆ induced by the partial order on {−1, 0, 1} in which −1 < 1
is the only strict inclusion. In other words, only cells lying on precisely the same
hyperplanes γ⊥, γ ∈ Xrel

M ∪∆ can be compared, and one is smaller than the other
if the set of γ ∈ Xrel

M positive on the first cell is contained in the corresponding set
for the second cell. These ‘maximal’ cells form a complex, and the cells of maximal
dimension are the ones that we want to count. It would be interesting to see if
there is a Zaslavsky-type formula for the number of cells in this complex.

4. Null-cones with few irreducible components

The adjoint representation of G on its Lie algebra g has the property that N (gp)
is irreducible for all p; in other words: c(gp) = 1 for all p. Using the results of the
previous section this is clear: the non-zero weights of T in g are the roots, and each
of these is either a positive or a negative linear combination of the simple roots.
Lemma 3.2 shows that none of them is relevant, so that Z+ = P ◦

+ has only one
connected component.

We now want to find out how many representations share this property with
the adjoint representation: with G and M as before, when is c(Mp) = 1 for all p?
More generally, it is natural to ask, for how many representations M the numbers
c(Mp) are uniformly bounded by a prescribed number N . Note that for reductive,
non-semisimple G one can construct many such M by taking an arbitrary module
and tensoring with an appropriate character of G, to the effect that N (Mp) = Mp

for all p. Hence it makes sense to study this question for semisimple G first. Now
for G semisimple of type A1 one readily finds that Z+ = P ◦

+ for all modules M ,
so we have to exclude A1, as well, from our discussion. Using the theory of the
previous sections, we can prove the following fundamental result.

Theorem 4.1. Suppose that char K = 0. Let N be a natural number and suppose
that G is a semisimple algebraic group without simple components of type A1. Then
there exists a finite subset S of X(T ) such that every rational G-module M having
c(Mp) ≤ N for all p has XM ⊆ S.

The condition charK = 0 will be used for a convenient description of the weight
system of irreducible modules. It would be interesting to investigate whether this
condition is really necessary; but here we assume from now on that charK = 0.

It is not hard to see that the simply connected cover of G has the same null-cone
on M as G, so that we may as well assume that G is simply connected. Also,
the number limp→∞ c(Mp) is an ascending function of XM by the results of the
previous sections, so that it suffices for the theorem to prove that only finitely many
irreducible modules M have limp→∞ c(Mp) ≤ N . The following lemma further
reduces the proof of the theorem to the case of simple G.

Lemma 4.2. Suppose that G = G1 ×G2 where G1, G2 are semisimple, and let M
be an irreducible rational G-module. Then limp→∞ cG(Mp) ≥ limp→∞ cG1(Mp),
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where cG1(Mp) is the number of components of the null-cone in Mp, regarded as a
G1-module.

Proof. We write 1 = T 1 × T 2, where T i is a maximal torus in G1. Accordingly,
we have X = X1 × X2 for the character groups, Y = Y 1 × Y 2 for the groups of
1-PSGs, and P+ = P 1

+×P 2
+. Because M is irreducible, we have XM = XM1 ×XM2

for some irreducible Gi-modules Mi. As a G1-module, M is isomorphic to a direct
sum of dim M2 copies of M1, so that cG1(Mp) = cG1(Mp dim M2

1 ); hence we have to
prove that that limp→∞ cG(Mp) ≥ limp→∞ cG1(Mp

1 ).
To this end, fix a weight γ2 ∈ XM2 that lies in the closed cone generated by the

negative roots for G2—such a weight always exists by W -stability of XM2—so that
〈γ2, λ2〉 ≤ 0 for all λ2 ∈ P 2

+. For all γ1 ∈ XM1 and all λ = λ1 + λ2 ∈ P+ we then
have

〈γ1 + γ2, λ〉 > 0 ⇒ 〈γ1, λ1〉 > 0.

Now let µ, µ′ be representantives of distinct maximal components of Z1
+ = (P 1

+)◦ \⋃
γ∈XM1

γ⊥. Then µ and µ′ define (not necessarily maximal) halfs XM (µ) and
XM (µ′) in XM . We claim that no half XM (λ), λ = λ1 + λ2 ∈ P+, contains both
the halfs XM (µ) and XM (µ′). Indeed, suppose that XM (λ) contains XM (µ). In
particular, we have

〈γ1 + γ2, µ〉 > 0 ⇒ 〈γ1 + γ2, λ1 + λ2〉 > 0

for all γ1 ∈ XM1 . But by the choice of γ2 this implies

〈γ1, µ〉 > 0 ⇒ 〈γ1, λ1〉 > 0,

for all γ1 ∈ XM1 , so that XM1(λ
1) contains XM1(µ). An identical argument shows

that XM1(λ
1) contains XM1(µ

′), but this contradicts the fact that µ and µ′ repre-
sent distinct maximal components of Z1

+. We conclude that there are at least as
many maximal components in Z+ as in Z1

+. �

In what follows G is simply connected and simple and (., .) is a W -invariant inner
product on XR, which provides a norm ||.|| on XR. For γ0 ∈ X a dominant weight,
we write M(γ0) for the irreducible G-module of highest weight γ0. Let R ⊆ X be
the root lattice, i.e., the lattice generated by the αi, so that XM(γ0) ⊆ γ0 + R. We
need to find big balls in weight systems of large representations.

Lemma 4.3. Suppose that G is simple and simply connected, and let A be a bounded
subset of XR. Then there are only finitely many dominant weights γ0 for which
XM(γ0) does not contain (γ0 + R) ∩A.

Proof. It suffices to prove this fact for A = Br = {γ ∈ XR | ||γ|| ≤ r} for r ∈ R+.
Suppose therefore that XM(γ0) does not contain (γ0 + R) ∩ Br; we will show that
this excludes all but finitely many highest weights. It is well known—and here we
use char K = 0—that XM(γ0) is the intersection with γ0 + R of the convex hull of
the W -orbit of γ0 [6]; denote this convex hull by C. By assumption, C does not
contain the ball Br, and if α ∈ Br is a point not belonging to C, then by convexity
of C there exists an affine hyperplane H through α not intersecting C. Let β be
the shortest vector of H, so that ||β|| ≤ ||α|| ≤ r and H is the set of vectors whose
inner product with β equals ||β||2. As C does contain 0—the sum of the W -orbit
of γ0 is 0—we find that C lies on the side of H where the inner product with β is
small; in particular, we have (γ0, β) < ||β||2 ≤ r2.
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By the W -action we may in addition assume that β is in the positive Weyl
chamber, i.e., has non-negative inner product with all simple roots (note that this
is a different Weyl chamber from P+, which lives in the dual space YR). Now the
positive Weyl chamber is sharp-angled in the sense that any two non-zero elements
in it have positive inner product—this can be checked by computing the inner
products of the fundamental weights as listed, for instance, in [3]; we use here that
the group is simple!—and it follows from this that there is a positive constant a with
the property that (δ1, δ2) ≥ a||δ1||||δ2|| for all δ1, δ2 in the positive Weyl chamber.
But then also (γ0, β) ≥ a||γ0||||β|| and combining this with the inequality obtained
above we find

||γ0|| < (1/a)||β|| ≤ r/a,

so that, indeed, only finitely many highest weights have this property. �

The key tool in our proof of Theorem 4.1 is the following lemma.

Lemma 4.4. Let G be a connected, reductive algebraic group and let M be a rational
G-module. Suppose that XM contains strings of relevant weights of the form

A = {γ, γ + α, . . . , γ + (N − 1)α} and

B = {−γ − cα,−γ − (c + 1)α, . . . ,−γ − (c + N − 1)α}

where α is a non-negative (integer) linear combination of the simple roots and where
c ∈ [0, 1). Then limp→∞ c(Mp) > N .

Proof. The hyperplanes β⊥ with β ∈ A cut the open Weyl chamber P ◦
+ into N + 1

connected components C0, . . . , CN , where λ ∈ Cj is equivalent to

〈γ + kα, λ〉 < 0 for all k = 0, . . . , j − 1 and

〈γ + kα, λ〉 > 0 for all k = j, . . . , N − 1.

Here we used 〈α, λ〉 > 0 for all λ ∈ P+ and the fact that the weights in A are
relevant.

Now if c = 0, then B = −A and the hyperplanes annihilating the weights in B do
not refine the subdivision of P ◦

+. If, on the other hand, c > 0, then the inequalities

〈γ + (j + 1)α, λ〉 > −〈−γ − (c + j)α, λ〉 > 〈γ + jα, λ〉,

for λ ∈ P ◦
+ and all j, show that for j = 0, . . . , N −1 the hyperplane (−γ− (c+ j))⊥

cuts Cj+1 into two components, while not meeting the other Ck. In total, the
hyperplanes β⊥ with β ∈ A∪B therefore cut P ◦

+ into 2N +1 connected components.
Here we used that the weights in B are relevant.

Regardless of whether c = 0 or c 6= 0, the hyperplanes β⊥ with β ∈ A∪B cut P ◦
+

into connected components of which N +1 are maximal relative to A∪B—namely
those where λ satisfies

XM (λ) ∩ (A ∪B) = {−γ − cα, . . . ,−γ − (c + j − 1)α, γ + jα, . . . , γ + (N − 1)α}

for some j ∈ {0, . . . , N}. By taking into account the other weights of M , as well,
the number of maximal components can only increase. The lemma now follows
from the results of the previous sections. �

We are now in a position to prove Theorem 4.1.
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Proof of Theorem 4.1. As noted before, we may assume that G is simply connected
and we may concentrate on irreducible representations. By Lemma 4.2 we may in
addition assume that G is simple. We now show that in irreducible representations
whose highest weight is sufficiently large the existence of α-strings as in Lemma 4.4
among the relevant weights is unavoidable. Indeed, set

D :=
∑

i

[0, 1)αi;

as G is semisimple, D is a fundamental domain for R in XR. Let d ∈ N be the
(finite) index of R in X. Now choose a relevant virtual weight γ′ ∈ XR for which
the closure γ′ + 2D + (N − 1)dD lies entirely in the set of relevant virtual weights.
This is possible, since the relevant virtual weights form a non-empty open subset
in XR that is stable under multiplication with R \ {0} (see Lemma 3.2)—here we
use that G is not of type A1, in which case there are no relevant weights.

For all but finitely many dominant weights γ0 ∈ X the weight system of M(γ0)
contains the set

(γ′ + 2D + (N − 1)dD ∪ −γ′ − 2D − (N − 1)dD) ∩ (γ0 + R)

by Lemma 4.3. Suppose that this is the case. As D is a fundamental domain for
R, γ′+D contains a unique element γ of γ0 +R and also −γ−D contains a unique
element δ of γ0 + R; hence δ ∈ −γ′ − 2D. Now if δ = −γ—in particular, this will
be the case if d = 1, as then R equals X—then we let α be an arbitrary simple
root and we set c := 0. Otherwise, we set α := d(−γ − δ) ∈ dD and c := 1/d < 1.
In either case, we find jα ∈ jdD for all j. By the assumption on γ0, the weight
system XM(γ0) contains the α-strings

γ, γ + α, . . . , γ + (N − 1)α

and
δ = −γ − cα,−γ − cα, . . . ,−γ − (c + N − 1)α,

that is, two α-strings as needed for Lemma 4.4. �

Regarding the first question of this section: it would be interesting to classify,
for simple G, all G-representations M for which N (Mp) is irreducible for all p > 0.
Surprisingly, the easy sufficient condition for reducibility obtained by taking N = 1
in Lemma 4.4—namely, the existence of relevant weights γ and δ in X(M) with
the property that −γ − δ is a positive linear combination of the simple roots—
seems strong enough to classify such M for simple G. I conclude this paper with a
conjecture, partially based on computations in LiE [9].

Conjecture 4.5. Suppose that G is a simple, simply connected algebraic group in
characteristic 0 and of rank ≥ 2; and let M be a finite-dimensional, rational G-
module for which N (Mp) is irreducible for all p. Let L be the set of highest weights
of T in M , but leave out the adjoint weight and the trivial weight. Then (G, L) is in
the following list (relative to the ordering of simple roots and fundamental weights
as in [3]).

(1) G = A2 and L ⊆ {ω1, 3ω1} (standard representation V and S3(V )) or
L ⊆ {ω2, 3ω2} (V ∗ and S3(V ∗)).

(2) G = Ar with r > 2 and L is a subset of {ω1} (standard) or of {ωr} (dual
standard).
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(3) G = B2 and L is a subset of {ω1, ω2, 2ω1} (standard, 4-dimensional, or
quadratic forms modulo the defining form).

(4) G = Br with r ≥ 3 and L is a subset of {ω1, 2ω1} (standard, or quadratic
forms modulo the defining form).

(5) G = Cr with r ≥ 3 and L is a subset of {ω1, ω2} (standard, or skew
symmetric bilinear forms modulo the defining form).

(6) G = G2 and L is a subset of {ω1, 2ω1}.
(7) G = F4 and L is a subset of {ω4} (the 26-dimensional module).
(8) G = E6, E7, or E8 and L = ∅.

Conversely, for all pairs (G, M) for which (G, L) is in the list above, N (Mp) is
irreducible for all p.

The last statement of this conjecture is readily verified case by case. Moreover,
for G not of type Bn, Cn, E7, E8, F4, or G2 the conjecture is true, and verified as
follows: For these G any module M is self-dual, so that XM = −XM . By the
results of the previous sections c(Mp) is then the number of connected components
of Z+. Now if XM contains a weight γ that is not a multiple of a root, then γ⊥

meets some open Weyl chamber in YR, and hence for some W -conjugate δ ∈ XM of
γ the hyperplane δ⊥ cuts P ◦

+ into two parts. But then Z+ has at least 2 connected
components. Therefore, any M with N (Mp) irreducible for all p must have XM ⊆⋃

α∈∆ Rα—and, conversely, for any M with this property N (Mp) is irreducible for
all p. It is not hard to determine, for each of the types above, the dominant weights
γ0 for which XM(γ0) consists entirely of root multiples, and this results in the list
above.

In the remaining two cases, An and E6, however, the existence of relevant weights
does not imply the reducibility of N (Mp), and more subtle reasoning would be
needed to prove the conjecture: For dominant weights γ0 not appearing in the list
above, one would have to exhibit relevant weights γ and δ in XM(γ0) such that
−γ − δ is a positive linear combination of the simple roots. Though elementary,
this task seems combinatorially rather intricate, and the conjecture above is merely
supported by computations exhibiting such γ and δ in small modules M for E6 and
for small An.
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